Answer:
a) see attachment
b)
![v=f'(t)=-2t+4](https://img.qammunity.org/2020/formulas/mathematics/college/n5cc4secb7h5trm9l1huvmhgn3ky3ubowf.png)
c)
![v=f'(t)=-2(1)+4=2ms^(-1)](https://img.qammunity.org/2020/formulas/mathematics/college/gi2wmhzs7uf1ic6tpjvxzpqd8cksw084bz.png)
![a=f''(1)=-2ms^(-2)](https://img.qammunity.org/2020/formulas/mathematics/college/82u6ck5b2dr0v51faxim89ap173vp8j67a.png)
d)
![a=f''(2)=-2ms^(-2)](https://img.qammunity.org/2020/formulas/mathematics/college/oo7v1i16rdlfmuqzlha2uqkawjf4et3p8r.png)
Explanation:
The position function of the object is given by;
![s=f(t)=-t^2+4t-3;0\leq t\leq 5](https://img.qammunity.org/2020/formulas/mathematics/college/krqbu2vtxafodabsjx74grj267xdl8wa1u.png)
a. The position function can be rewritten as;
![s=f(t)=-(t-2)^2+1;0\leq t\leq 5](https://img.qammunity.org/2020/formulas/mathematics/college/fo25fjch19zz5cskqg1myxi1sp1mpfaefi.png)
This the graph of
reflected in the x-axis,and shifted right 2 units, up 1 unit.
The graph is shown in the attachment.
b) The velocity function is given by;
![v=f'(t)=-2t+4](https://img.qammunity.org/2020/formulas/mathematics/college/n5cc4secb7h5trm9l1huvmhgn3ky3ubowf.png)
This is a straight line with slope -2 and y-intercept, 4.
The graph is shown in the attachment.
c) The velocity at t=1 is
![v=f'(t)=-2(1)+4=2ms^(-1)](https://img.qammunity.org/2020/formulas/mathematics/college/gi2wmhzs7uf1ic6tpjvxzpqd8cksw084bz.png)
The acceleration is given by;
![a=f''(1)=-2ms^(-2)](https://img.qammunity.org/2020/formulas/mathematics/college/82u6ck5b2dr0v51faxim89ap173vp8j67a.png)
d) When the velocity is zero, we have;
![v=f'(t)=-2t+4=0](https://img.qammunity.org/2020/formulas/mathematics/college/yxfkq08u8896cz8yibblekogixxfvx9pfe.png)
This implies that;
![-2t=-4\implies t=2](https://img.qammunity.org/2020/formulas/mathematics/college/ebpf7p8ynud3abw9j8g1b35n63t37g93kc.png)
When t=2,
![a=f''(2)=-2ms^(-2)](https://img.qammunity.org/2020/formulas/mathematics/college/oo7v1i16rdlfmuqzlha2uqkawjf4et3p8r.png)