Answer:
![2√(6x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/84mixpb13qp9djbzirgjvh3z68omp8bvza.png)
Explanation:
The expression
can be written as:
![4((√(3x))/(√(2)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t9fetz37ha64patcjje2tqhcftdx7xmhwp.png)
Therefore, to simplify the expression you need to Rationalize the denominator to get rid the radical
:
Then, you must multiply the numerator and the denominator by
.
Remember the following:
Also remember that:
![\sqrt[n]{a}*\sqrt[n]{b}=\sqrt[n]{ab}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ffa74a0usbayocdfdqj6zp04w93joxvrah.png)
Therefore, you get:
![4(((√(3x))(√(2)))/((√(2))(√(2))))=4((√(6x))/((√(2))^2))=4((√(6x))/(2))=(4√(6x))/(2)=2√(6x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8znnvd9krona3q7h7mhv6hlr04cts6iw89.png)