4.5k views
2 votes

\sqrt[n]{x}

\sqrt[n]{x}-example-1

2 Answers

2 votes

Answer:

C.
4\log_w(x^2-6)-(1)/(3) \log_w(x^2+8)

Explanation:

The given logarithmic expression is


\log_w\frac{(x^2-6)^4}{\sqrt[3]{x^2+8} }

Recall and use the quotient law of logarithms;


\log_a((m)/(n) )=\log_a(m )-\log_a(n)


=\log_w(x^2-6)^4-\log_w\sqrt[3]{x^2+8}


=\log_w(x^2-6)^4-\log_w(x^2+8)^{(1)/(3)}

Recall and use the power rule of logarithms:
\log_aM^n=n\log_aM


=4\log_w(x^2-6)-(1)/(3) \log_w(x^2+8)

The correct choice is C.

User Bejoy George
by
6.9k points
1 vote

Answer:

option C


log_(w)4(x^(2)-6)}-(1)/(3) ({x^(2)+8)}

Explanation:

Given in the question an expression


log_(w)\frac{(x^(2)-6)^4}{\sqrt[3]{x^(2)+8}}

Step1

Apply logarithm subtraction rule:


log_(w)(m)/(n)=log_(w)m-n


log_(w)(x^(2)-6)^4}-{\sqrt[3]{x^(2)+8}

Step2

Apply logarithm power rule


log_(w)x^(n)=nlog_(w)x


log_(w)4(x^(2)-6)}-(1)/(3) ({x^(2)+8)}

as


\sqrt[n]{x}=(x)^(1)/(n)

User Anindya Chatterjee
by
5.6k points