198k views
2 votes
Use the trigonometric subtraction formula for sine to verify this identity


cos(( (\pi)/(2) ) - x) = sinx


Use the trigonometric subtraction formula for sine to verify this identity cos(( (\pi-example-1

1 Answer

5 votes

The cosine difference formula yields


\cos(a-b)=\cos(a)\cos(b)+\sin(a)\sin(b)

In your case,


a=(\pi)/(2),\quad b=x

so the formula translates to


\cos\left((\pi)/(2)-x\right)=\cos\left((\pi)/(2)\right)\cos(x)+\sin\left((\pi)/(2)\right)\sin(x)

Since


\cos\left((\pi)/(2)\right)=0,\quad \sin\left((\pi)/(2)\right)=1

the expression above becomes


0\cdot\cos(x)+1\cdot\sin(x)=\sin(x)

User PJ Bergeron
by
4.6k points