Answer:
Part a) The lateral area is
![4r^(2) \pi \ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/moga8xsmcf4joff10sm2szm7gsr133osn0.png)
Part b) The area of the two bases together is
![2r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5e4wplp6u2ydjyeuj5uek05u3sbmuxp1yh.png)
Part c) The surface area is
![6r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/70yi0qzzyicg6pqfnz9o3xi3kr52uzsr2g.png)
Explanation:
we know that
The surface area of a right cylinder is equal to
![SA=LA+2B](https://img.qammunity.org/2020/formulas/mathematics/high-school/shwlcfhu158oyaank2jggpup43w4l5mdd5.png)
where
LA is the lateral area
B is the area of the base of cylinder
we have
![r=r\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/ulfpcd4kytzq9vec55yv0rssf6l9hkoelv.png)
![h=2r\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/bae0iem3sikpg5o2qxydk1sp3fo6nssxtv.png)
Part a) Find the lateral area
The lateral area is equal to
![LA=2\pi rh](https://img.qammunity.org/2020/formulas/mathematics/high-school/5o95dmo31nnbjjud9azqoudctcpjycbti6.png)
substitute the values
![LA=2\pi r(2r)](https://img.qammunity.org/2020/formulas/mathematics/high-school/48gpfg1hl0dg23k8vx7r8vsrr4utwug464.png)
![LA=4r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t3umtfkvhp7vsm6zpl8cex78ga7n4y75mh.png)
Part b) Find the area of the two bases together
The area of the base B is equal to
![B=r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d2a3kgkqqyuyx03j89oouu4pj0ev4nw2n1.png)
so
the area of the two bases together is
![2B=2r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2crqt9npw1lagb0f925rt8xfbf8zflih0t.png)
Part c) Find the surface area of the cylinder
![SA=LA+2B](https://img.qammunity.org/2020/formulas/mathematics/high-school/shwlcfhu158oyaank2jggpup43w4l5mdd5.png)
we have
![LA=4r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t3umtfkvhp7vsm6zpl8cex78ga7n4y75mh.png)
![2B=2r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2crqt9npw1lagb0f925rt8xfbf8zflih0t.png)
substitute
![SA=4r^(2) \pi+2r^(2) \pi=6r^(2) \pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hybocbhq1o4kkqkvegs6zoyrzma7del7x8.png)