Answer:
x^ \frac{m}{n} = \sqrt[n]{x^m}x
n
m
=
n
x
m
and
(x^m)^n=x^{mn}(x
m
)
n
=x
mn
so
x^ \frac{3}{5} = \sqrt[5]{4^3}x
5
3
=
5
4
3
but wait, there's more
4=2², so
x^ \frac{3}{5} = \sqrt[5]{4^3} = \sqrt[5]{(2^2)^3} = \sqrt[5]{2^6}x
5
3
=
5
4
3
=
5
(2
2
)
3
=
5
2
6
=
2^ \frac{6}{5}=(2^ \frac{5}{5})(2^ \frac{1}{5})=2 \sqrt[5]{2}2
5
6
=(2
5
5
)(2
5
1
)=2
5
2
also, 4^3=64