Answer:
The equation of the parabola is
![y=-(x^2)/(16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bpbbrqca4fp6oumtak4ml2ytqcg0ecuhxa.png)
Explanation:
We start by assuming a general point on the parabola
.
Using the distance formula
,
we find that the distance between
and the focus (0,-4) is
, and the distance between
and the directrix y =4 is
. On the parabola, these distances are equal:
![√((y-4)^2)=√((x-0)^2+(y+4)^2)\\\\\mathrm{Square\:both\:sides}\\\\\left(√(\left(y-4\right)^2)\right)^2=\left(√(\left(x-0\right)^2+\left(y+4\right)^2)\right)^2\\\\(y-4)^2=(x-0)^2+\left(y+4\right)^2}\\\\y^2-8y+16=x^2+y^2+8y+16\\\\y^2-8y+16-16=x^2+y^2+8y+16-16\\\\y^2-8y=y^2+8y+x^2\\\\y^2-8y-\left(y^2+8y\right)=y^2+8y+x^2-\left(y^2+8y\right)\\\\-16y=x^2\\\\(-16y)/(-16)=(x^2)/(-16)\\\\y=-(x^2)/(16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/c26bee16w9tscyxxcj5zum4nckc26zqox8.png)