Answer:
The length of the radius of the circle K is
![17\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/743k8jwarrymcqar6bgdvxv9a868j55umz.png)
Explanation:
we know that
The triangle CDE is a right triangle with the 90 degree angle at point E
so
Applying the Pythagoras Theorem
Find the length of CD (diameter of the circle K)
![CD^(2)=CE^(2)+DE^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7vyucp6u9yognkd67mzedyhss5sdf9gxmt.png)
substitute the values
![CD^(2)=16^(2)+30^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/leu0b564zftfct69jil34lmowh1m5wlsbb.png)
![CD^(2)=1,156](https://img.qammunity.org/2020/formulas/mathematics/middle-school/65pitcczhi377gysybycx5yg21byrbmncr.png)
![CD=34\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g4rju183i9zbcxzk5r3ldo0qkbgeoavw2p.png)
Find the radius
Remember that the radius is half the diameter
so
![r=34/2=17\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mlpvj2c4zccjmvz6k8nvgwbhqo42mi0oeb.png)