Answer:
![\large\boxed{4.\ S_(13)=260}](https://img.qammunity.org/2020/formulas/mathematics/high-school/9p8o40dldnd439z8o6t4iecea9y0ip2t5d.png)
![\large\boxed{5.\ \sum\limits_(k=1)^7(2k+5)=91}](https://img.qammunity.org/2020/formulas/mathematics/high-school/bvsqcw8v411b0c0o8hrj3xjtg38opqz98i.png)
![\large\boxed{6.\ a_1=17,\ a_2=26,\ a_3=35}](https://img.qammunity.org/2020/formulas/mathematics/high-school/u420wk0xvezwizz1bj9zezzg7x4dmjr7au.png)
Explanation:
4.
We have:
![a_6=18,\ a_(13)=32](https://img.qammunity.org/2020/formulas/mathematics/high-school/rtsz25wjykt93i7rmrmqhni60ajyegmq0b.png)
These are the terms of the arithmetic sequence.
We know:
![a_n=a_1+(n-1)d](https://img.qammunity.org/2020/formulas/mathematics/high-school/r7i81jeqew1qm7c8pzrel40gkhhd1uv7xk.png)
Therefore
![a_6=a_1+(6-1)d\ \text{and}\ a_(13)=a_1+(13-1)d\\\\a_6=a_1+5d\ \text{and}\ a_(13)=a_1+12d\\\\a_(13)-a_6=(a_1+12d)-(a_1+5d)\\\\a_(13)-a_6=a_1+12d-a_1-5d\\\\a_(13)-a_6=7d](https://img.qammunity.org/2020/formulas/mathematics/high-school/lgnodplzk56ptd50sf7p6ngli910s8ne56.png)
Substitute a₆ = 18 and a₁₃ = 32:
![7d=32-18](https://img.qammunity.org/2020/formulas/mathematics/high-school/rio0ahmciirqu4wed73uxtpabrsbamt7x2.png)
divide both sides by 7
![d=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7fnzn8ig20in3pzwnj6vuxjd1zjjg3cum1.png)
![a_6=a_1+5d](https://img.qammunity.org/2020/formulas/mathematics/high-school/c20cuu25rinvduwxokhwpro0ro8r80u6y6.png)
![18=a_1+5(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fzp0az1uwlauohfa0cr0bqifwwxq49rw0g.png)
subtract 10 from both sides
![8=a_1\to a_1=8](https://img.qammunity.org/2020/formulas/mathematics/high-school/ttyk7043x1jndoaiadah89hyyr2il47th6.png)
The formula of a sum of terms of an arithmetic sequence:
![S_n=(a_1+n_1)/(2)\cdot n](https://img.qammunity.org/2020/formulas/mathematics/high-school/2vgzqzo0qa06dwmfclghg23feqlm41wb1c.png)
Substitute a₁ = 8, a₁₃ = 32 and n = 13:
![S_(13)=(8+32)/(2)\cdot13=(40)/(2)\cdot13=20\cdot13=260](https://img.qammunity.org/2020/formulas/mathematics/high-school/j4559gv17n9nkkcx6gnkgpt0amyx0jqxxg.png)
===========================================
5.
We have
![\sum\limits_(k=3)^7(2k+5)\to a_k=2k+5](https://img.qammunity.org/2020/formulas/mathematics/high-school/7phjc115i759fvz5r3mhqjiws5y27x3mt3.png)
Calculate
![a_(k+1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1x4f6s5jhww6n679t84uokxoj3f3bxjq8i.png)
![a_(k+1)=2(k+1)+5=2k+2+5=2k+7](https://img.qammunity.org/2020/formulas/mathematics/high-school/l8f4dh555yr39twtgdi13dsvmf4iua1s19.png)
Calculate the difference:
![a_(k+1)-a_k=(2k+7)-(2k+5)=2k+7-2k-5=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/2ttcncisw41tirz6bt8npp1hm01i7ozbuz.png)
It's the arithmetic sequence with first term
![a_1=2(1)+5=2+5=7](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5w6llk0hayzd8rwolfvu68t5b4ns4xtce.png)
and common difference d = 2.
The formula of a sum of terms of an arithmetic sequence:
![S_n=(2a_1+(n-1)d)/(2)\cdot n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k5fygskl26y3nhv1fhb69pkdj8om0yxzv1.png)
Substitute n = 7, a₁ = 7 and d = 2:
![S_7=(2(7)+(7-1)(2))/(2)\cdot7=(14+(6)(2))/(2)\cdot7=(14+12)/(2)\cdot7=(26)/(2)\cdot7=(13)(7)\\\\S_7=91](https://img.qammunity.org/2020/formulas/mathematics/high-school/9sgudr7tkdqsos6ejoaqt2ffstyz3c0d01.png)
===========================================
6.
We have:
![a_1=17,\ a_n=197,\ S_n=2247](https://img.qammunity.org/2020/formulas/mathematics/high-school/g6tn5xowwohfiee939rh8qeik8zfpyruna.png)
The formula for the n-th term of an arithmetic sequence:
![a_n=a_1+(n-1)d](https://img.qammunity.org/2020/formulas/mathematics/high-school/r7i81jeqew1qm7c8pzrel40gkhhd1uv7xk.png)
The formula of the sum of terms of an arithmetic sequence:
![S_n=(2a_1+(n-1)d)/(2)\cdot n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k5fygskl26y3nhv1fhb69pkdj8om0yxzv1.png)
Substitute:
![(1)\qquad 197=17+(n-1)d\\\\(2)\qquad2247=((2)(17)+(n-1)d)/(2)\cdot n](https://img.qammunity.org/2020/formulas/mathematics/high-school/74qj1q4mhmyme4ve7hw0mj1tro42w99per.png)
Convert the first equation:
subtract 17 from both sides
Substitute it to the second equation:
![2247=(34+180)/(2)\cdot n\\\\2247=(214)/(2)\cdot n](https://img.qammunity.org/2020/formulas/mathematics/high-school/2qx96h4ib1r58e8ijsj7yl4wtmts4w7ks0.png)
divde both sides by 107
![21=n\to n=21](https://img.qammunity.org/2020/formulas/mathematics/high-school/92ijxpcurcmy39w4ekq84mxmvhvdmaqm5b.png)
Put the value of n to the equation (n - 1)d = 180:
![(21-1)d=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/xgsskofn05lczyu2m3gi4226to6qlb3h4j.png)
divide both sides by 20
![d=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/nhxkv9j3yjnnagg1p44dh0k1e2jm71eltl.png)
Therefore we have the explicit formula for the nth term of an arithmetic sequence:
![a_n=17+(n-1)(9)\\\\a_n=17+9n-9\\\\a_n=9n+8](https://img.qammunity.org/2020/formulas/mathematics/high-school/9gvzw8b8ljljjii9gx3j5vdx5oyjirj4ej.png)
Put n = 1, n = 2 and n = 3:
![a_1=9(1)+8=9+8=17\qquad\text{CORRECT :)}\\\\a_2=9(2)+8=18+8=26\\\\a_3=9(3)+8=27+8=35](https://img.qammunity.org/2020/formulas/mathematics/high-school/wi79zguwc5goubrkxhnbv2xm0m51xs9ntc.png)