Answer:
The correct answer option is A) A=126.2°, B=19.2°, and C=34.6°.
Explanation:
Using cosine rule to find angle A:
![a^2=b^2+c^2-2bc cos A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s0jn52o5zemrgum74ctmb1dysazsx1yu9k.png)
Substituting the given values in the formula to get:
![27^2=11^2+19^2-2(11)(19) cos A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2yjfl134xg7gpyhsbc5lcqoy75ddxnkvcw.png)
![729-482=-418cos A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p9bdzdf0od71tj9lfnn0za51amci9c6s6k.png)
![A=cos'(-0.590)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k0kv4jpn7btk3mj27bnibiw07yq8dedexs.png)
A = 126.2°
Now that we have found one angle, we can use sine rule to find the other two angles.
![(SinA)/(a) =(Sin B)/(b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dqijgl5ietk4oalwc7wluxu8unytvfr9ok.png)
![(Sin 126.2)/(27) =(Sin B)/(11)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tfjrttpae51qi3eij49mz3kwwk259zfls0.png)
![B=sin'(0.328)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/23c52ye4qh04w8jspknz29ci9ofnahozlj.png)
B = 19.2°
![(SinB)/(b) =(Sin C)/(c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ywshwxe2cmep98983nwgzt58vmgfd5mzh.png)
![(Sin 19.2)/(11) =(Sin C)/(19)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3vlqm5vbztj20e0216io290jh7g73xxjg7.png)
![C=sin'(0.567)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tau2np8pyjr4ubvbul6j4moyu1edfk8s0i.png)
C = 34.6°
Therefore, the correct answer option is A) A=126.2°, B=19.2°, and C=34.6°.