Answer:
![3xy^2(-4x^2y^3-3x+4y)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q6as0mbvggcfzoc9kzkoly7r2ayz894dja.png)
Explanation:
The given expression is
![-12x^3y^5-9x^2y^2+12xy^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/wb18rdbxu1ajwm4u0st5ag8mkb3hupp8cs.png)
To find the greatest common factor; we find the prime factorization of each term in the expression.
![-12x^3y^5=-2^2*3*x^3* y^5](https://img.qammunity.org/2020/formulas/mathematics/high-school/mul3cpa2m5wszgfv8jmrsdbp6dbnlshlh4.png)
![-9x^2y^2=-3^2* x^3 * y^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ss0bhh3q8u60qrgpocrcjcpvqy7i4l6r2n.png)
![12xy^3=2^2* 3* x* y^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/s0n9ggtn2blujdo75dubnqc1vfv4h3lvq0.png)
The greatest common factor is the product of the least powers of the common factors.
![GCF=3xy^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5f0unk8gupmicue0qrknxn8dtnicztzmy.png)
We factor the GCF to obtain;
![-12x^3y^5-9x^2y^2+12xy^3=3xy^2(-4x^2y^3-3x+4y)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dxk594jzhvm91f9lkv7ky34yzxvnu9the2.png)