3.3k views
2 votes
Which function has a vertex at (2,-9)​

Which function has a vertex at (2,-9)​-example-1
User Familia
by
7.8k points

2 Answers

3 votes

Answer:

C. f(x) = (x – 5)(x + 1)

Explanation:

User Jason Marcell
by
8.2k points
5 votes

Answer:

The correct option is C) function (x-5)(x+1) has vertex (2,-9).

Explanation:

The vertex of an up down facing parabola of the form y=ax²+bx+c is
x_v=-(b)/(2a)

option A) -(x-3)²

Rewrite
y=-\left(x-3\right)^2 in the form
y=ax^(2)+bx+c

Expand
-\left(x-3\right)^(2)


\left(x^(2)-6x+9\right)

The parabola parameters are: a = - 1, b = 6, c = - 9


x_v=-(b)/(2a)


x_v=-(6)/(2\left(-1\right))

simplify, 3

Plugin
x_v = 3 to find the
y_v value


y_v=-3^(2)+6* 3 -9


y_v=-0

If a<0, then the vertex is a maximum value.

If a>0, then the vertex is a minimum value.

since, a = - 1

Maximum (3,0)

option B) (x+8)²

Rewrite
y=\left(x+8\right)^(2) in the form
y=ax^(2)+bx+c

Expand
\left(x+8\right)^(2)


\left(x^(2)+16x+64\right)

The parabola parameters are: a = 1, b = 16, c = 64


x_v=-(b)/(2a)


x_v=-(16)/(2\left(1\right))

simplify, - 8

Plugin
x_v = -8 to find the
y_v value


y_v=-8^(2)+16(-8)+64


y_v=-0

If a<0, then the vertex is a maximum value.

If a>0, then the vertex is a minimum value.

since, a = 1

Minimum (-8,0)

option C) (x-5)(x+1)

Rewrite
y=(x-5)(x+1) in the form
y=ax^(2)+bx+c

Expand
y=(x-5)(x+1)


\left(x^(2)-4x-5\right)

The parabola parameters are: a = 1, b = -4, c = -5


x_v=-(b)/(2a)


x_v=-(-4)/(2\left(1\right))

simplify, 2

Plugin
x_v = 2 to find the
y_v value


y_v=2^(2)-4(2)-5


y_v=-9

If a<0, then the vertex is a maximum value.

If a>0, then the vertex is a minimum value.

since, a = 1

Minimum (2,-9)

Hence, the correct option is C) function (x-5)(x+1) has vertex (2,-9).

User Kevan
by
7.5k points