Answer:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bgxv250lq95wrmafcb55tvqaessq2twczo.png)
Explanation:
We want to reflect this 2x1 vector on the line y = x.
To make this reflection we must use the following matrix:
![R=\left[\begin{array}{cc}0&1\\1&0\\\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5fqn2p1zt1sdyl3jowoobduyv66gm4os2q.png)
Where R is known as the reflection matrix on the line x = y
Now perform the product of the vector <-1,5> x R.
![\left[\begin{array}{ccc}-1\\5\end{array}\right]x\left[\begin{array}{ccc}0&1\\1&0\end{array}\right]\\\\\\\left[\begin{array}{ccc}-1(0) +5(1)&-1(1)+5(0)\end{array}\right]\\\\\\\left[\begin{array}{ccc}5&-1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vyjetm2xsf97a8tm70dsxtmswv5swem62x.png)
The vector matrix that represents the reflection of the vector <-1,5> across the line x = y is:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bgxv250lq95wrmafcb55tvqaessq2twczo.png)