44.5k views
0 votes
Find the sum of the geometric. Remember to show work and explain.​

Find the sum of the geometric. Remember to show work and explain.​-example-1
User Rosalie
by
4.7k points

2 Answers

6 votes

Answer:


\large\boxed{\sum\limits_(n=1)^6400\left((1)/(2)\right)^n=393.75}

Explanation:

The formula of a sum of terms of a geometric sequence:


S_n=a_1\cdot(1-r^n)/(1-r)

We have:


\sum\limits^6_(n=1)400\left((1)/(2)\right)^n\to a_n=400\left((1)/(2)\right)^n

Put n = 1:


a_1=400\left((1)/(2)\right)^1=400\left((1)/(2)\right)=200\\\\r=(a_(n+1))/(a_n)


a_n=400\left((1)/(2)\right)^n\\\\a_(n+1)=400\left((1)/(2)\right)^(n+1)\\\\r=(a_(n+1))/(a_n)=a_(n+1):a_n=\bigg(400\left((1)/(2)\right)^(n+1)\bigg):\bigg(400\left((1)/(2)\right)^n\bigg)\qquad\text{use}\ a^n:a^m=a^(n-m)\\\\=\left((1)/(2)\right)^(n+1-n)=\left((1)/(2)\right)^1=(1)/(2)

Substitute:


a_1=200,\ r=(1)/(2),\ n=6\\\\S_6=200\cdot(1-\left((1)/(2)\right)^6)/(1-(1)/(2))=200\cdot(1-(1)/(64))/((1)/(2))=200\cdot(63)/(64)\cdot(2)/(1)=393.75

User Alexey Ten
by
4.9k points
4 votes

Answer: 393.75

Explanation:


\sum\limits^6_1 {400\bigg((1)/(2)\bigg)^n}\\\\n=1:\ 400\bigg((1)/(2)\bigg)^1\quad =200\\n=2:\ 400\bigg((1)/(2)\bigg)^2\quad =100\\n=3:\ 400\bigg((1)/(2)\bigg)^3\quad =50\\n=4:\ 400\bigg((1)/(2)\bigg)^4\quad =25\\n=5:\ 400\bigg((1)/(2)\bigg)^5\quad =12.5\\n=6:\ 400\bigg((1)/(2)\bigg)^6\quad =6.25\\.\qquad \qquad \qquad \qquad \quad \_\_\_\_\_\_\_\_\_\_\\\\.\qquad \qquad \quad \quad \text{Sum}=\large\boxed{393.75}

User Tambler
by
4.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.