44.5k views
0 votes
Find the sum of the geometric. Remember to show work and explain.​

Find the sum of the geometric. Remember to show work and explain.​-example-1
User Rosalie
by
7.4k points

2 Answers

6 votes

Answer:


\large\boxed{\sum\limits_(n=1)^6400\left((1)/(2)\right)^n=393.75}

Explanation:

The formula of a sum of terms of a geometric sequence:


S_n=a_1\cdot(1-r^n)/(1-r)

We have:


\sum\limits^6_(n=1)400\left((1)/(2)\right)^n\to a_n=400\left((1)/(2)\right)^n

Put n = 1:


a_1=400\left((1)/(2)\right)^1=400\left((1)/(2)\right)=200\\\\r=(a_(n+1))/(a_n)


a_n=400\left((1)/(2)\right)^n\\\\a_(n+1)=400\left((1)/(2)\right)^(n+1)\\\\r=(a_(n+1))/(a_n)=a_(n+1):a_n=\bigg(400\left((1)/(2)\right)^(n+1)\bigg):\bigg(400\left((1)/(2)\right)^n\bigg)\qquad\text{use}\ a^n:a^m=a^(n-m)\\\\=\left((1)/(2)\right)^(n+1-n)=\left((1)/(2)\right)^1=(1)/(2)

Substitute:


a_1=200,\ r=(1)/(2),\ n=6\\\\S_6=200\cdot(1-\left((1)/(2)\right)^6)/(1-(1)/(2))=200\cdot(1-(1)/(64))/((1)/(2))=200\cdot(63)/(64)\cdot(2)/(1)=393.75

User Alexey Ten
by
8.2k points
4 votes

Answer: 393.75

Explanation:


\sum\limits^6_1 {400\bigg((1)/(2)\bigg)^n}\\\\n=1:\ 400\bigg((1)/(2)\bigg)^1\quad =200\\n=2:\ 400\bigg((1)/(2)\bigg)^2\quad =100\\n=3:\ 400\bigg((1)/(2)\bigg)^3\quad =50\\n=4:\ 400\bigg((1)/(2)\bigg)^4\quad =25\\n=5:\ 400\bigg((1)/(2)\bigg)^5\quad =12.5\\n=6:\ 400\bigg((1)/(2)\bigg)^6\quad =6.25\\.\qquad \qquad \qquad \qquad \quad \_\_\_\_\_\_\_\_\_\_\\\\.\qquad \qquad \quad \quad \text{Sum}=\large\boxed{393.75}

User Tambler
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories