Answer:
For both figures
![A=4+2+2+1=9\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fwuojb52qpvfcuyxu8tr61dx2wugy7kbc7.png)
Explanation:
we know that
The area for both composite figures is equal to the area of a square plus the area of two isosceles right triangles plus the area of a smaller isosceles triangle
so
Area of the square
![A=2^(2)=4\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/wwp6a37japt31z0jwsmad8x4gvif3gurlv.png)
Area of the isosceles right triangle
![A=(1/2)(2)(2)=2\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/z0zrowhjgwpql6ossx7djx0nwoxlaqdqwb.png)
Area of the smaller isosceles triangle
![A=(1/2)(2)(1)=1\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/b7hw149gc9854yhdqfo61u6h1ifj783zhr.png)
The area of the composite figure is
![A=4+2+2+1=9\ units^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fwuojb52qpvfcuyxu8tr61dx2wugy7kbc7.png)