Answer:
![P(X\geq90) =0.00878](https://img.qammunity.org/2020/formulas/mathematics/high-school/f8z5e2rvu5ehan9x3bd0feoa4dnje3ck61.png)
Explanation:
This situation can be modeled by a binomial distribution of parameters:
![p = 0.8\\\\q = 0.2\\\\n = 100](https://img.qammunity.org/2020/formulas/mathematics/high-school/qpbworhyfzqstw43rfwwldryn9wnd6ys4c.png)
We want to find the probability that at least 90 are in repair.
We can approximate this problem to a normal distribution, where:
![\mu = np](https://img.qammunity.org/2020/formulas/mathematics/high-school/tv1uufv0agrdguuii5mqr1tt3o5fxuyc4h.png)
![\mu = 80](https://img.qammunity.org/2020/formulas/mathematics/high-school/tmlosj28cb81pt01y9gf47oxndn13jfmwq.png)
![\sigma = √(npq)\\\\\sigma = 4](https://img.qammunity.org/2020/formulas/mathematics/high-school/dxkvxhwdyha5gvet00w60x5s0s68lim2vh.png)
Then we look for
![P(X\geq90) = P(X>90 -0.5)\\\\P(X\geq90) = P(X>89.5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4blhwwvqholbfrnj1i64u4d8p1gn1ltomx.png)
Then we must find the normal standard statistic Z-score
![Z = (X-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/h9zyjv47ia7g4fl1elag7v059xspv1pmto.png)
Therefore:
![P(X>89.5) = P((X-\mu)/(\sigma)>(89.5-80)/(4))\\\\P(X>89.5) =P(Z>2.375)](https://img.qammunity.org/2020/formulas/mathematics/high-school/x05jpqa3ch189bti2qa157ei0ttyedjgpa.png)
Looking in the standard normal table we obtain:
![P(Z>2.375) = 0.00878](https://img.qammunity.org/2020/formulas/mathematics/high-school/czxza9dqy6u43quhwck0nxdld63ze6b9cz.png)