ANSWER
![x = 1\: or \: x = - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8wi0oj0lep46qeqbucbm406uormc96xdt7.png)
EXPLANATION
The given rational expression is
![((x - 1)(x + 5))/(x - 5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kqvu9aazlkvjs89ksvq413cwp8oi4zzsa2.png)
For the given rational function to be zero, then the numerator must be equal to zero.
We now equate the numerator to zero and solve for x.
This implies that,
![(x - 1)(x + 5) = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7oa2v7us0hzi663qzb7jcn4m3jsvhaqhhx.png)
We use the zero product property to obtain,
![(x - 1) = 0 \: or \: (x + 5) = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/357mmjzl69vfiq4yi92xlfnjqepf1dve4r.png)
![x = 1\: or \: x = - 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8wi0oj0lep46qeqbucbm406uormc96xdt7.png)
Hence the zeros of the given rational function are x=-5,x=1