Answer: Option b.
Explanation:
The reciprocal trigonometric ratios are:
1) Cosecant (
), which is the reciprocal of the sine.
2) Secant (
), which is the reciprocal of the cosine.
3) Cotangent (
), which is the reciprocal of the tangent.
If:
![sin\theta=(opposite)/(hypotenuse)}\\\\cos\theta=(adjacent)/(hypotenuse)\\\\tan\theta=(opposite)/(adjacent)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4ya054tchrlklp12fvutqfe63b6smaj4b3.png)
Then:
![csc\theta=(hypotenuse)/(opposite)}\\\\sec\theta=(hypotenuse)/(adjacent)\\\\cot\theta=(adjacent)/(opposite)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yubuvfv6f5qf6skzwt4kkeb6k0zz8sq52u.png)
Knowing that:
![opposite=9\\adjacent=12\\hypotenuse=15](https://img.qammunity.org/2020/formulas/mathematics/high-school/vibq9vxhapzpn6sfhgfdhot9p0qns5o73b.png)
You can substitute these values into the trigonometric ratios to find the values of the reciprocal ratios of the angle
:
![csc\theta=(15)/(9)}\\\\sec\theta=(15)/(12)\\\\cot\theta=(12)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gamjdhd9yrraczoe6sx44f98x51jl6ng6v.png)