Answer:
![(x-3)^(2) +(y-2)^(2)=41](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sl7yn1a4013wmwvehy75mnl8hvtmkmvh2k.png)
Explanation:
step 1
Find the diameter of the circle
the formula to calculate the distance between two points is equal to
![d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cludwa9rlbp5l9xccb2d39dpew3fngh0ii.png)
we have
substitute the values
![d=\sqrt{(6+2)^(2)+(-2-8)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sddc7nj70aq6fz2c33v4eoi0lyxz1zi05h.png)
![d=\sqrt{(8)^(2)+(-10)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rp5nwptd1q3lein7vdrvatzeub2cms99b7.png)
![d=√(164)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c1idxoq2jt102lu6ctxosvmktagkhlz3a7.png)
![d=2√(41)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kgxcdtj48ryd7hexcsgbuzh2w7i0zoe192.png)
step 2
Find the center of the circle
The center is the midpoint of the diameter
The center is equal to
![C=((8-2)/(2),(-2+6)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1l6c9vtgiadh72fudtrcso7fbjpcbqkx8v.png)
![C=(3,2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vede533p781by0okex274f8drgnznqaq80.png)
step 3
Find the equation of the circle
The equation of the circle in center radius form is equal to
![(x-h)^(2) +(y-k)^(2)=r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5csspae574i3d2aro6r7910c83fhu8k2ng.png)
we have
(h,k)=(3,2)
---> the radius is half the diameter
substitute
![(x-3)^(2) +(y-2)^(2)=(√(41))^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q0s6xwry5qsofvonh8r6v6xzu5zfmtcyw8.png)
![(x-3)^(2) +(y-2)^(2)=41](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sl7yn1a4013wmwvehy75mnl8hvtmkmvh2k.png)