Answer:
![f(x) = 3(x -(2)/(3))^2 -(22)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q5w3tvns9ynmw388sn4opojdxq2dnhtro7.png)
The vertex is
![((2)/(3), -(22)/(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/243k39sfyj4zv6v1e5hbowaty8xdzzpiir.png)
Explanation:
For a general quadratic function the form is:
![ax ^ 2 + bx + c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7bl6z87iob0p6ynzghmbvo3xf81jnvbsc8.png)
For the function
![f(x) = 3x ^ 2 -4x -6](https://img.qammunity.org/2020/formulas/mathematics/high-school/x04hvhby4lsrzl0txjsmq52majjti9ed2o.png)
Take common factor 3.
![f(x) = 3(x ^ 2 -(4)/(3)x - 2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ou1z0irjv0qn3eglgnpj0pvytxlh9yvxrl.png)
The values of the coefficients for the function within the parenthesis are the following:
,
,
![c = -2](https://img.qammunity.org/2020/formulas/mathematics/high-school/eh9xmthhbyg58qzaqrsyg0lqk4yl6rhrq0.png)
Take the value of b and divide it by 2. Then, the result obtained squares it.
![(b)/(2)= -(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5myjmw6oppvogu46sl0vmu04bhk3cgqs9.png)
![((b)/(2))^2=(4)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1e2cq3fqlsqghesseqsg98rpcjlu4jnnsf.png)
Add and subtract
![(4)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/593x9cj6xundf4nbj5w1lrrseodoyrkzjn.png)
![f(x) = 3([x ^ 2 -(4)/(3)x +(4)/(9)]- 2-(4)/(9))](https://img.qammunity.org/2020/formulas/mathematics/high-school/v43yx2f2q3vjqxd5uzpf0zu8xi7q9xo2wg.png)
Write the expression of the form
![f(x) = (x-(b)/(2))^2 +k](https://img.qammunity.org/2020/formulas/mathematics/high-school/poqzpm3s2p2azpk6fs9xoc8qrtseskjvfv.png)
![f(x) = 3(x -(2)/(3))^2 -(22)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q5w3tvns9ynmw388sn4opojdxq2dnhtro7.png)
The vertex is
![((2)/(3), -(22)/(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/243k39sfyj4zv6v1e5hbowaty8xdzzpiir.png)