Answer:
The function intersect the x-axis two times
Explanation:
we have
![y=-2x^(2)+3x+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/frsl7m1er20pyyijbd49sl3jjvsflkop69.png)
To find the x-intercepts equate the equation to zero
so
![0=-2x^(2)+3x+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zwbbcbzcyjcvi3fhj8dnpvfcs71a355y8b.png)
![-2x^(2)+3x+5=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y45wwgadlghw8f1j7xnbocdmrcxd3n94fg.png)
The formula to solve a quadratic equation of the form
is equal to
![x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}](https://img.qammunity.org/2020/formulas/mathematics/high-school/gln51xb9bal8vny301mdetxf6tthe7p2sg.png)
in this problem we have
so
![a=-2\\b=3\\c=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u2735imc4dhgvwnyd33th1e8qll0levqf6.png)
substitute in the formula
![x=\frac{-3(+/-)\sqrt{3^(2)-4(-2)(5)}} {2(-2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vvzwa0hz2166yumnix022aw4bnvwo5xe7a.png)
![x=\frac{-3(+/-)√(49)} {-4}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4gxlmk4jhpy8dvdm4h1j2adbl1t7afrmpz.png)
![x=\frac{-3(+/-)7} {-4}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ramlaf6tb0ue8o7gam0f4uu2gjddllke1e.png)
![x1=\frac{-3(+)7} {-4}=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yi5ujg7o1bu8faue1lmlt4aiwtv86wxzkn.png)
![x2=\frac{-3(-)7} {-4}=2.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sv00atu7fnehpq4yrrywhyjr5tkws9qddc.png)
so
The function has two x-intercepts
therefore
The function intersect the x-axis two times