Answer:
1) All integers where n ≥ 1
2) -1,023
Explanation:
We are given a G.P. where
First term =
![a_1=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/s9zumkdtm5xwbe5tez3sujj0kj01bd86xd.png)
Common ratio = r = 6
nth term of G.P. =
![a_n=ar^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/759uthitre3k0xqw4d4f2ea8qum6plrcdt.png)
where a is the first term
So, Substitute n = 1
![a_1=(1) 6^(1-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hiq5di26x0gy4u9zay9pdlgi8n9ubsw5ha.png)
![a_1=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/s9zumkdtm5xwbe5tez3sujj0kj01bd86xd.png)
So, Domain for n = All integers where n ≥ 1
Now Find the sum of a finite geometric sequence from n = 1 to n = 5, using the expression
![-3(4)^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tj5a62udn5aci38rbapk25lrxt4x64hkux.png)
![\sum^(n=5)_(n=1) -3(4)^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xkmm3r4ck40vbkxqpg2at02t5fkoint5zh.png)
![-3(4)^(1-1)+(-3(4)^(2-1))+(-3(4)^(3-1))+(-3(4)^(4-1))+(-3(4)^(5-1))](https://img.qammunity.org/2020/formulas/mathematics/high-school/sv8ky8yk31vkfb9xhfrfsxb6lzdzrki2gz.png)
![-3-12-48-192-768](https://img.qammunity.org/2020/formulas/mathematics/high-school/6t5akrqsa0uqmwisp2rshr85ji0nchot5i.png)
![-1023](https://img.qammunity.org/2020/formulas/mathematics/high-school/hogevnpjvlmhoa5upchm6dapinobwwdo5s.png)