227k views
5 votes
Save me the headache

Save me the headache-example-1
User Ganesh M S
by
4.6k points

2 Answers

2 votes

Answer:

Simple tell everyone around you to be quiet and to keep quiet

if u have a headache

Explanation:

User GDR
by
5.7k points
3 votes


(9\sin2x+9\cos2x)^2=81

Taking the square root of both sides gives two possible cases,


9\sin2x+9\cos2x=9\implies\sin2x+\cos2x=1

or


9\sin2x+9\cos2x=-9\implies\sin2x+\cos2x=-1

Recall that


\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta

If
\alpha=2x and
\beta=\frac\pi4, we have


\sin\left(2x+\frac\pi4\right)=(\sin2x+\cos2x)/(\sqrt2)

so in the equations above, we can write


\sin2x+\cos2x=\sqrt2\sin\left(2x+\frac\pi4\right)=\pm1

Then in the first case,


\sqrt2\sin\left(2x+\frac\pi4\right)=1\implies\sin\left(2x+\frac\pi4\right)=\frac1{\sqrt2}


\implies2x+\frac\pi4=\frac\pi4+2n\pi\text{ or }\frac{3\pi}4+2n\pi

(where
n is any integer)


\implies2x=2n\pi\text{ or }\frac\pi2+2n\pi


\implies x=n\pi\text{ or }\frac\pi4+n\pi

and in the second,


\sqrt2\sin\left(2x+\frac\pi4\right)=-1\implies\sin\left(2x+\frac\pi4\right)=-\frac1{\sqrt2}


\implies2x+\frac\pi4=-\frac\pi4+2n\pi\text{ or }-\frac{3\pi}4+2n\pi


\implies2x=-\frac\pi2+2n\pi\text{ or }-\pi+2n\pi


\implies x=-\frac\pi4+n\pi\text{ or }-\frac\pi2+n\pi

Then the solutions that fall in the interval
[0,2\pi) are


x=0,\frac\pi4,\frac\pi2,\frac{3\pi}4,\pi,\frac{5\pi}4,\frac{3\pi}2,\frac{7\pi}4

User RVP
by
5.4k points