227k views
5 votes
Save me the headache

Save me the headache-example-1
User Ganesh M S
by
7.3k points

2 Answers

2 votes

Answer:

Simple tell everyone around you to be quiet and to keep quiet

if u have a headache

Explanation:

User GDR
by
8.0k points
3 votes


(9\sin2x+9\cos2x)^2=81

Taking the square root of both sides gives two possible cases,


9\sin2x+9\cos2x=9\implies\sin2x+\cos2x=1

or


9\sin2x+9\cos2x=-9\implies\sin2x+\cos2x=-1

Recall that


\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta

If
\alpha=2x and
\beta=\frac\pi4, we have


\sin\left(2x+\frac\pi4\right)=(\sin2x+\cos2x)/(\sqrt2)

so in the equations above, we can write


\sin2x+\cos2x=\sqrt2\sin\left(2x+\frac\pi4\right)=\pm1

Then in the first case,


\sqrt2\sin\left(2x+\frac\pi4\right)=1\implies\sin\left(2x+\frac\pi4\right)=\frac1{\sqrt2}


\implies2x+\frac\pi4=\frac\pi4+2n\pi\text{ or }\frac{3\pi}4+2n\pi

(where
n is any integer)


\implies2x=2n\pi\text{ or }\frac\pi2+2n\pi


\implies x=n\pi\text{ or }\frac\pi4+n\pi

and in the second,


\sqrt2\sin\left(2x+\frac\pi4\right)=-1\implies\sin\left(2x+\frac\pi4\right)=-\frac1{\sqrt2}


\implies2x+\frac\pi4=-\frac\pi4+2n\pi\text{ or }-\frac{3\pi}4+2n\pi


\implies2x=-\frac\pi2+2n\pi\text{ or }-\pi+2n\pi


\implies x=-\frac\pi4+n\pi\text{ or }-\frac\pi2+n\pi

Then the solutions that fall in the interval
[0,2\pi) are


x=0,\frac\pi4,\frac\pi2,\frac{3\pi}4,\pi,\frac{5\pi}4,\frac{3\pi}2,\frac{7\pi}4

User RVP
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories