ANSWER
1. A
2. C
3. D
4. B
5. E
Step-by-step explanation
QUESTION A
The given system of equation is :
![x-4y=-8...(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7w976dhna7q2m9crddg7o7irzym8exkwl1.png)
and
![2x-3y=-16...(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gifd7wjw5frq0zvmy2aa6bc2j4p7vfm47f.png)
Make x the subject in equation (1)
This implies that;
![x=4y-8...(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dpai7dyg3pnfo6ec4iti4ioz031b41dtyd.png)
Put equation(3) into equation (2).
![2(4y-8)-3y=-16](https://img.qammunity.org/2020/formulas/mathematics/high-school/z1efqfd92n92n5mdcgq4634wyglj8brvae.png)
![8y-16-3y=-16](https://img.qammunity.org/2020/formulas/mathematics/high-school/o8kukdear0o5yygl5uknd43lf0zasb57r8.png)
Group like terms;
![8y-3y=-16+16](https://img.qammunity.org/2020/formulas/mathematics/high-school/8egd1s0ilqmvqwc7ca656hrl5rmf00k75z.png)
![5y=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/yhnoedn6odprtseqmkdvfr8gbfg2dbapz2.png)
![y=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/b792qjogr8s4ujwepli4crk8crr7izzend.png)
Put y=0 into equation(3).
![x=4(0)-8](https://img.qammunity.org/2020/formulas/mathematics/high-school/kgucuv929dj588uk4r72a47cc9t15alkwx.png)
![x=-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/drgup4p8pq37h8wkkmn331mp9zdzvmv593.png)
(-8,0)
QUESTION B
First equation:
![x-y=-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/dvumlzkui3kbqpa2l1o82i27ehbvz8lwku.png)
Second equation:
![3x-y=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/151b7sxkluzplnxrouyvpau9xanam0dxn3.png)
Subtract the first equation from the second equation.
![3x-x-y+y=0+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/f5da7gx3wd8of5mxz3deh6j2n8i2jcf34h.png)
Simplify;
![2x=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pqqv4hgd5mm1ka4ne9r63u65wuy839boco.png)
![x=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/tm1gspaocfnp875ybbxdnb3weyr5fcnjyq.png)
Put x=1 into any of the equations, say the first one.
![1-y=-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/u9qwcmh3uk2ov9ncjbw5o9i2isuo3sj3fd.png)
![-y=-2-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/9wa5qvsf9u0r0pe3eo5g457p4t1xv1ol02.png)
![-y=-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/qdro91p0pz9hc87doz6l2aphxrr5j2sizm.png)
![y=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/bz4oxcswmw3r7gvwn866nuoh3alxt85uy3.png)
(1,3)
QUESTION C
First equation:
![x+y=-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gxuujzt2qbt9o80ux8on9ronrm4n3lhyuf.png)
Second equation:
![-3x+2y=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ply88mqczpqldk9da3rb3oy7oz5hkc9hh5.png)
Make y the subject in the first equation;
![y=-x-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ejjb0q6jmywxj196uza3eqncyyf3ddvoww.png)
Put y=-x-4 into the second equation;
![-3x+2(-x-4)=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/xh8afkdbgsqldk63k9no6pxs1rpo0olbdi.png)
Expand:
![-3x-2x-8=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/7005e3kcu9rjpda9rk269xqfgd3fvw3m4o.png)
Group like terms:
![-3x-2x=2+8](https://img.qammunity.org/2020/formulas/mathematics/high-school/bl3telg5utsda3cbbc3zrvry68179me3n5.png)
![-5x=10](https://img.qammunity.org/2020/formulas/mathematics/high-school/gsadvpbp9wyuen74urjy6w2qvc3f3y3msv.png)
![x=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q5l1a129xgxi5i1ksv4a87pka5x7u0p9nt.png)
Put x=-2 into
![y=-x-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ejjb0q6jmywxj196uza3eqncyyf3ddvoww.png)
This implies that;
![y=--2-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/un3qsdx0k1ruus5xbl1stv8lgbigifa11a.png)
![y=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pkf9clori5oeihuk7us9obwec6e9a5v5w6.png)
(-2,-2)
QUESTION D
First equation:4x+6y=-12
Second equation: 2x+3y=9
Divide the first equation by 2;
New equation: 2x+3y=-6
Subtract the second equation from the new equation;
![2x-2x+3y-3y=-6-9](https://img.qammunity.org/2020/formulas/mathematics/high-school/dw4x0z4g1w9r0qybhp70m5ezzgmlwmt3gd.png)
. This statement is not true.
The system has no solution;
QUESTION E
First equation:
![x+y=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/ssdx0hlymeum57vjtjwhsws3fcwfzzjdu5.png)
Second equation:
![4x+4y=-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/dmqmtrb905lhe700yhs2tdvfksmq7rli4v.png)
Divide the second equation by 4;
New equation:
![x+y=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/ssdx0hlymeum57vjtjwhsws3fcwfzzjdu5.png)
Subtract the second equation from the new equation;
![x-x+y-y=-1+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/vch98wlbyqavz4n1y4rw22llvrdi36jgii.png)
This statement is true.
This system has infinitely many solutions.