133k views
8 votes
Given that f(x) = x^2 – 2x - 63 and g(x) = x + 7, find (f - g)(x)

User Cyval
by
2.8k points

1 Answer

14 votes

Answer:

(f - g)(x) = x² - 3x - 70

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Combining Like Terms

Explanation:

Step 1: Define

f(x) = x² - 2x - 63

g(x) = x + 7

(f - g)(x) is f(x) - g(x)

Step 2: Find (f - g)(x)

  1. Substitute: (f - g)(x) = x² - 2x - 63 - (x + 7)
  2. Distribute -1: (f - g)(x) = x² - 2x - 63 - x - 7
  3. Combine like terms (x): (f - g)(x) = x² - 3x - 63 - 7
  4. Combine like terms (Z): (f - g)(x) = x² - 3x - 70
User Ryan Kyle
by
3.8k points