211k views
4 votes
Find the quotient -5+12i/ 3-3 square root 3i using trigonometric forms

1 Answer

5 votes

Answer:

2.433

Explanation:

using

a+bi=r(cosP+isinP)

Let

-5 =
r_(1)cosФ

12 =
r_(1)sinФ

Taking square both on both sides

(-5)² + (12)² =
r_(1)^2cos²Ф +
r_(1)^2sin²Ф

we know that

sin²Ф + cos²Ф = 1

25 + 144 =
r_(1)^2(1)


r_(1) = √(144 + 25)

= 13

Similarly,

Let

-3 =
r_(2)cosФ

-3√3 =
r_(2)sinФ

taking square both on both sides

(-3)² + (-3√3)² =
r_(2)^2cos²Ф +
r_(2)^2sin²Ф

we know that

sin²Ф + cos²Ф = 1

9 + 27 =
r_(2)^2(2)


r_(2) = √(9 + 27)

= 6

Also


(r_(1)sin\alpha )/(r_(1)cos\alpha ) = (12)/(-5)


\alpha = r_(1)tan^(-1) ((12)/(-5) )

And


(r_(2)sin\alpha )/(r_(2)cos\alpha ) = (-3√(3) )/(3)\\


\alpha = r_(2)tan^(-1) (-3√(3) )/(3)

So


(-5+12i)/(3-3√(3i) ) =
(13tan^(-1)(-12)/(5))/(6tan^(-1)(-√(3)))

= 2.433

User J Blaz
by
8.3k points