49.5k views
4 votes
Rewrite the quadratic function in vertex form.
Y=3x^2-12x+4

1 Answer

4 votes

Answer:


\large\boxed{y=3(x-2)^2-8}

Explanation:

The vertex form of an equation of a parabola y = ax² + bx + c:


f(x)=a(x-h)^2+k

(h, k) - vertex


h=(-b)/(2a),\ k=f(h)

We have the equation:


y=3x^2-12x+4\\\\a=3,\ b=-12,\ c=4

Substitute:


h=(-(-12))/(2(3))=(12)/(6)=2\\\\k=f(2)=3(2^2)-12(2)+4=3(4)-24+4=12-24+4=-8

Finally:


y=3(x-2)^2+(-8)=3(x-2)^2-8

User Andrew Sasha
by
6.2k points