Answer:
The solution in the attached figure
![sin(A)=(12)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/thnyedoqfkrfkomykrqtribjv8eu8x47km.png)
![sin(B)=(5)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ft0bhettigsb05fuu42xpuh0n775w381p4.png)
![cos(A)=(5)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4l1yh1z7avrd3wcanvv957ahifk4kkpznq.png)
![cos(B)=(12)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/77utuq90wm9l6u6w02t3dt3l6gv0insxlg.png)
![sin(A)=cos(B)](https://img.qammunity.org/2020/formulas/mathematics/high-school/k4og4a24yp1wx2j5kurduwpdj8l2gpoyr5.png)
![sin(B)=cos(A)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pmi3fz8m7vodc7zkejydh95ijrzyhlu9dx.png)
Explanation:
we know that
In the right triangle ABC
sin(A)=cos(B) and cos(A)=sin(B)
because
-------> by complementary angles
step 1
Find sin(A)
The function sine of angle A is equal to divide the opposite side angle A by the hypotenuse
![sin(A)=(BC)/(AB)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ki9ki7qs4eh60f3corpqvmzbo86dgm1x6x.png)
substitute the values
![sin(A)=(12)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/thnyedoqfkrfkomykrqtribjv8eu8x47km.png)
step 2
Find sin(B)
The function sine of angle B is equal to divide the opposite side angle B by the hypotenuse
![sin(B)=(AC)/(AB)](https://img.qammunity.org/2020/formulas/mathematics/high-school/y529df5g5ez1nsjh499tr7zo1nb2q8vvrt.png)
substitute the values
![sin(B)=(5)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ft0bhettigsb05fuu42xpuh0n775w381p4.png)
step 3
Find cos(A)
The function cosine of angle A is equal to divide the adjacent side angle A by the hypotenuse
![cos(A)=(AC)/(AB)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hi2z2gsdw1e5lhahan4ll6ff2mil9wi56s.png)
substitute the values
![cos(A)=(5)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4l1yh1z7avrd3wcanvv957ahifk4kkpznq.png)
![cos(A)=sin(B)](https://img.qammunity.org/2020/formulas/mathematics/high-school/va8nmyi7qc14a78xhf9b9xpwd4ijth41l5.png)
step 4
Find cos(B)
The function cosine of angle B is equal to divide the adjacent side angle B by the hypotenuse
![cos(B)=(BC)/(AB)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xp8y6gwf8dsq5hwadlyg24pjog350do5xs.png)
substitute the values
![cos(B)=(12)/(13)](https://img.qammunity.org/2020/formulas/mathematics/high-school/77utuq90wm9l6u6w02t3dt3l6gv0insxlg.png)
![cos(B)=sin(A)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nken75ev2p4bw73ksabesuhij6uvizox5v.png)