523,966 views
25 votes
25 votes
Solve the inequality. 14 + 10y ≥ 3(y + 14)

User Ottis
by
2.6k points

1 Answer

22 votes
22 votes


\large\displaystyle\text{$\begin{gathered}\sf \bf{14+10y\geq 3(y+14) } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{Simplify \ both \ sides \ of \ the \ inequality. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{10y+14\geq 3y+14 } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{Subtract \ 3y \ from \ both \ sides. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{10y+14-3y\geq 3y+42-3y } \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf \bf{7y+14\geq 41 } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{ Subtract \ 14 \ from \ both \ sides. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{7y+14-14\geq 42-14 } \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf \bf{7y\geq 28 } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{Divide \ both \ sides \ by \ 7. }} \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf \bf{(7y)/(7)\geq (28)/(7) } \end{gathered}$}\\\boxed{\large\displaystyle\text{$\begin{gathered}\sf \bf{y\geq 4} \end{gathered}$} }
User Sreemanth Pulagam
by
2.8k points