450,005 views
8 votes
8 votes
Look at the picture


Look at the picture ​-example-1
User Daniel Szabo
by
2.7k points

1 Answer

22 votes
22 votes


\large\displaystyle\text{$\begin{gathered}\sf 9|x-8| < 36 \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf Divide \ both \ sides \ by \ 9. \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf (9(|x-8|))/(9) < (36)/(9) \end{gathered}$}

  • \large\displaystyle\text{$\begin{gathered}\sf |x-8| < 4 \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf Solve \ Absolute \ Value. \end{gathered}$}


  • \large\displaystyle\text{$\begin{gathered}\sf |x-8| < 4 \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf We \ know \ x-8 < 4 \ and \ x-8 > -4 \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf x-8 < 4 \ (Condition \ 1) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x-8+8 < 4+8 \ (Add \ 8 \ to \ both \ sides) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x < 12 \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf x-8 > -4 \ (Condition \ 2) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x-8+8 > -4+8 \ (Add \ 8 \ to \ both \ \ sides) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x > 4 \end{gathered}$}


\underline{\boldsymbol{\sf{Answer}}}


\boxed{\large\displaystyle\text{$\begin{gathered}\sf x < 12 \ and \ x > 4 \end{gathered}$} }


\large\displaystyle\text{$\begin{gathered}\sf Therefore,\bf{\underline{the \ correct \ option}} \ \end{gathered}$}\large\displaystyle\text{$\begin{gathered}\sf is \ \bf{\underline{

User Durgesh Pandey
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.