Answer:
m∠LTE = 110°
Explanation:
We know that sum of all arcs of a circle is 360°
Therefore
![m(arcAL)+m(arcLG)+m(arcGF)+(mFE)=360](https://img.qammunity.org/2020/formulas/mathematics/college/hx8408523qgtub47mu299oj73yawx4gu20.png)
Now we put the values of each arc
![(2x)+(3x)+(4x-8)+(x-12)=2x+3x+4x+x-8-12=10x-20=360](https://img.qammunity.org/2020/formulas/mathematics/college/m7pb57lew584yaafhr70of3eno9m8jctxq.png)
10x = 360 + 20
10x = 380
![x=(380)/(10)](https://img.qammunity.org/2020/formulas/mathematics/college/7g3y32jfz1ek19x02sa5te0mbl91gz5sxe.png)
x = 38
Now from the theorem of intersecting chords in a circle
Measure of ∠LTE =
![(1)/(2)[m(arcEL)+m(arcGF)]](https://img.qammunity.org/2020/formulas/mathematics/college/cahk5h04ywk4qkmv5hs2z4kn68eihkq9e6.png)
m(arc EL) = 2x = 2×38 = 76°
m(arc GF) = (4x - 8) = (4×38 - 8) = (152 - 8) = 144°
Now we can get the measure of ∠LTE
m∠LTE =
![(1)/(2)(76 + 144)=(220)/(2)=110](https://img.qammunity.org/2020/formulas/mathematics/college/9s8u64sqn9lwadsstgjbh64m2mlq34nn6i.png)
Therefore m∠LTE = 110° is the answer.