234k views
0 votes
HELPPPPPP find the fourth roots of 81(cos160+isin160) PLEASE

1 Answer

7 votes


81(\cos160^\circ+i\sin160^\circ)=81e^(160^\circ i)

By DeMoivre's theorem,


\left(81e^(160^\circ i)\right)^(1/4)=81^(1/4)e^((160+360k)^\circ i/4)

where
k=0,1,2,3.
81=3^4\implies81^(1/4)=3, so the 4th roots are


k=0:\quad3e^(40^\circ i)=3(\cos40^\circ+i\sin40^\circ)


k=1:\quad3e^(130^\circ i)=3(\cos130^\circ+i\sin130^\circ)


k=2:\quad3e^(220^\circ i)=3(\cos220^\circ+i\sin220^\circ)


k=3:\quad3e^(310^\circ i)=3(\cos310^\circ+i\sin310^\circ)

User Vishal Nagvadiya
by
4.8k points