234k views
0 votes
HELPPPPPP find the fourth roots of 81(cos160+isin160) PLEASE

1 Answer

7 votes


81(\cos160^\circ+i\sin160^\circ)=81e^(160^\circ i)

By DeMoivre's theorem,


\left(81e^(160^\circ i)\right)^(1/4)=81^(1/4)e^((160+360k)^\circ i/4)

where
k=0,1,2,3.
81=3^4\implies81^(1/4)=3, so the 4th roots are


k=0:\quad3e^(40^\circ i)=3(\cos40^\circ+i\sin40^\circ)


k=1:\quad3e^(130^\circ i)=3(\cos130^\circ+i\sin130^\circ)


k=2:\quad3e^(220^\circ i)=3(\cos220^\circ+i\sin220^\circ)


k=3:\quad3e^(310^\circ i)=3(\cos310^\circ+i\sin310^\circ)

User Vishal Nagvadiya
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories