Answer:
−2sin(2θ)cos(4θ)
Explanation:
sin(2∅)-sin(6∅)
Sum product Identity
sinα - sinβ = 2cos((α+β)/2)sin((α-β)/2)
Putting α= 2∅ and β= 6∅ in the identity we get
sin(2∅)-sin(6∅) = 2cos((2∅+6∅)/2)sin((2∅-6∅)/2)
=2cos(8∅/2)sin(-4∅/2)
=2cos(4∅)sin(-2∅)
= -2sin(2∅)cos(4∅)