Answer:
![\large\boxed{y=(1)/(4)x+2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/41v4vnjkwc73bojjsfqgjwb0inu71ilegj.png)
Explanation:
The slope-intercept form of the equation of a line:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept → (0, b)
The point-slope form of the equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
m - slope
(x₁, y₁) - point
We have the equation of a line:
![y-4=(1)/(4)(x-8)\to m=(1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ixvo3skl2d6jnhp33wgszim47bx67q647t.png)
and the point (0, 2) → b = 2.
Substitute:
![y=(1)/(4)x+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/evfyvinybkcqzzp5c2exm72d43cianvf4x.png)