22.2k views
5 votes
Plz help me

When graphed, which function has a horizontal asymptote at 4?

A.f(x)=2x-4

B.f(x)=2(3^x)+4

C.f(x)=-3x+4

D.f(x)=3(2^x)-4

2 Answers

2 votes

Answer:

It is B.

Explanation:

f(x) = 2(3^x) + 4

As x approaches negative infinity 2(3^x) approaches zero and f(x) approaches 4.

User Subratsss
by
7.9k points
3 votes

Answer:

B.
f(x)=2(3^x)+4

Explanation:

We have to find that which graph has horizontal asymptote at 4

We know that to find the horizontal asymptote , we simply evaluate the limit of the function as it approaches to infinity or it approaches to negative infinity.

A.
f(x)=2x-4


\lim_(x\rightarrow \infty)(2x-4)=\infty


\lim_(x\rightarrow -\infty)(2x-4)=-\infty

Limit of function does not exits, so function have not horizontal asymptote.

B.
f(x)=2(3^x)+4


\lim_(x\rightarrow \infty)(2(3^x)+4)=\infty


3^(\infty)=\infty


\lim_(x\rightarrow -\infty)(2(3^x)+4)=4

Because
3^(-\infty)=0

Hence, function have horizontal asymptote at 4.

C.
f(x)=-3x+4


\lim_(x\rightarrow \infty)(-3x+4)=\infty


\lim_(x\rightarrow -\infty)(-3x+4)=-\infty

Hence, function have not horizontal asymptote.

D.
f(x)=3(2^x)-4


\lim_(x\rightarrow \infty)(3(2^x)-4)=\infty

Because
2^(\infty)=\infty


\lim_(x\rightarrow -\infty)(3(2^x)-4)=-4


2^(-\infty)=0

Hence, function have horizontal asymptote at -4.

Therefore, option B is true.

User Leselle
by
7.6k points

No related questions found