Answer:
A. 6m and 2m
E. 11.25m and 3.75m
Explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional
so
Verify each case
case A) 6m and 2m
![(6)/(4.5)=(2)/(1.5) \\ \\6(1.5)=2(4.5)\\ \\9=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/7n8bgu361qqkts1nuq2duwecnyjg6fa2kx.png)
therefore
The legs are proportional
case B) 8m and 5m
![(8)/(4.5)=(5)/(1.5) \\ \\8(1.5)=5(4.5)\\ \\12\\eq22.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/p05z9j6h5r2c7rz8ii1nminlimwcxouehv.png)
therefore
The legs are not proportional
case C) 7m and 3.5m
![(7)/(4.5)=(3.5)/(1.5) \\ \\7(1.5)=3.5(4.5)\\ \\10.5\\eq15.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/wi0820kp3vnh9ybnda9967edzw67r1s91p.png)
therefore
The legs are not proportional
case D) 10m and 2.5m
![(10)/(4.5)=(2.5)/(1.5) \\ \\10(1.5)=2.5(4.5)\\ \\15\\eq11.25](https://img.qammunity.org/2020/formulas/mathematics/high-school/i4yn8ccvnhr9pfyduunixydladgvc1svbe.png)
therefore
The legs are not proportional
case E) 11.25m and 3.75m
![(11.25)/(4.5)=(3.75)/(1.5) \\ \\11.25(1.5)=3.75(4.5)\\ \\16.875=16.875](https://img.qammunity.org/2020/formulas/mathematics/high-school/25ypya1c7la4zh52l7qoue71jf5kub6tkt.png)
therefore
The legs are proportional