Answer:
![\large\boxed{y=(8)/(5)x-3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pkytm3jzovm8uvwk4g0iqrs63vrj70hrfr.png)
Explanation:
The slope-intercept form of an equation of a line:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
We have the points M(5, 5) and N(-10, -19). Substitute:
![m=(-19-5)/(-10-5)=(-24)/(-15)=(8)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ou6vh2jge9736z363hraxszm2mvhpsk0yi.png)
We have the equation:
![y=(8)/(5)x+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p4jnz1yy2mfbei4purnrnmbq3yv3yq8j6k.png)
Put the coordinates of the point M to the equation:
![5=(8)/(5)(5)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9e49ubata6w65eiv02zp4qqzvcvx2aapf7.png)
subtract 8 from both sides
![-3=b\to b=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5b2z7cbkuowdmacfp7329wai6uejtkz891.png)
Finally we have the equation:
![y=(8)/(5)x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mbpx6p4k1k5myqoz92aetovqn8g2l9zivy.png)