Answer:
![7,561.12\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9vlt2g3e8l3q62uklyn624yhqa9aksy7wh.png)
Explanation:
we know that
The lateral area of a cone is equal to
![LA=\pi rl](https://img.qammunity.org/2020/formulas/mathematics/college/e8w13t70bhl8j2ipphlkjz88atc6zjpmn1.png)
where
r is the radius of the base
l is the slant height
we have
----> the radius is half the diameter
![h=45\ mm](https://img.qammunity.org/2020/formulas/mathematics/high-school/zc31v693d2eur53w8ncccqg1h8pjxqq5v8.png)
To find the slant height apply the Pythagoras theorem
![l^(2)=r^(2)+h^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/re5fxjanqbhev6vb60ujsybq2gh15cimxd.png)
substitute the values
![l^(2)=40^(2)+45^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/87nr93mr7pz1q1vrew05wlow0odrdnrjv1.png)
![l^(2)=3,625](https://img.qammunity.org/2020/formulas/mathematics/high-school/79lcbu16f2aq5fz6jw0i4dha5jinv3vjiu.png)
![l=60.2\ mm](https://img.qammunity.org/2020/formulas/mathematics/high-school/mbwdq8vnjpxjtna6fyig2vgtd84rbdjull.png)
Find the lateral area
assume
![\pi=3.14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/elnllul6m5wik5ibdc7x3b8auxqsmgjtbn.png)
![LA=(3.14)(40)(60.2)=7,561.12\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w2yq6jnc1xcb38goksfs8s7blk433cbjih.png)