Answer:
$357
Explanation:
We have a rectangle measuring 25 feet × 9 feet. Remove from the rectangle two regular hexagons with a side length equal to 2 feet.
The formula of an area of a rectangle:
![A_r=lw](https://img.qammunity.org/2020/formulas/mathematics/high-school/noee1s6qqmcnbvy1aua0ca4u62axe9gadg.png)
l - length, w - width.
Substitute l = 25 ft and w = 9 ft:
![A_r=(25)(9)=225\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/qs2fj9po3d4y500ezipt53wu3vzxdl8t7k.png)
The formula of an area of a regular hexagon:
![A_h=6\cdot(a^2\sqrt3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9hwb7qai288h4mi3mjwwjbqai6e7te9vw0.png)
a - side
Substitute a = 2 ft:
![A_h=6\cdot(2^2\sqrt6)/(4)=6\sqrt3\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/cniowhi0txq0htp5cq5ze657xlvttd9pi1.png)
The area of the wall:
![A=A_r-2A_h](https://img.qammunity.org/2020/formulas/mathematics/high-school/9brppop2962ximslqoy5zh6fsot8jjy9ky.png)
Substitute:
![A=225-2(6\sqrt3)=225-12\sqrt3\approx225-20.785=204.215\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/9lbc3vw6evjxfp5qtrttnr0l0s38ycbded.png)
Paiting the wall costs $1.75 per ft². Calculate:
![(\$1.75)(204.215)\approx\$357](https://img.qammunity.org/2020/formulas/mathematics/high-school/jcc808vl0m9dtx1ip5bf40a1z2og6yo7x3.png)