Answer:
x y
-2 7
-1 10.5
0 15.75
1 23.625
2 35.4375
Explanation:
The general equation of the exponential function is
.
We know from our table that when
,
. Let's replace those values in our equation:
![y=ab^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ab51ed4dwfchqkcagmhiwcrpy6fewtgias.png)
![15.75=ab^0](https://img.qammunity.org/2020/formulas/mathematics/high-school/nhzeeczvxv8sn6lspabg2z3vvo2487zxpn.png)
Remember that
, so:
![15.75=a(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/brh3fvkjtjs0i1pwksz6hknqs8pfh1xso0.png)
![15.75=a](https://img.qammunity.org/2020/formulas/mathematics/high-school/miez3e6g0qcjyay7e0cqr4ikzsbhgy3rs0.png)
![a=15.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/ptsluq95hfxc4zbj5dn6hwkekf31c0y9cb.png)
We also know from our table that when
,
. Let's replace the values again:
![y=ab^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ab51ed4dwfchqkcagmhiwcrpy6fewtgias.png)
![10.5=ab^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jdb1dewj0jhjfofdetfx2e9kmeus2uzm05.png)
But we now know that
, so let's replace that value as well:
![10.5=15.75b^(-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t73qru90gpwq0368xr8e3q433afnccejfp.png)
Remember that
, so:
![10.5=(15.75)/(b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/a20a66hfizbihiiljqcuhjqi9xedcebtgp.png)
![10.5b=15.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/vg4tx77aijb2qdykwwos1a07k0ktahysp4.png)
![b=(15.75)/(10.5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zl1quucp0dtc9d8eviccng21j8ncgkhq2i.png)
![b=1.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/8aqqofhib72i7u8497enmo3rs56xvfrvn9.png)
Now, we can put it all together to complete our exponential function:
![y=ab^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ab51ed4dwfchqkcagmhiwcrpy6fewtgias.png)
![y=15.75(1.5)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/hpnkmhmta71a4c4uf388k3ikdbh3qsjpos.png)
To find the missing values, we just need to evaluate our function at
and
:
- For
![x=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/tm1gspaocfnp875ybbxdnb3weyr5fcnjyq.png)
![y=15.75(1.5)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/hpnkmhmta71a4c4uf388k3ikdbh3qsjpos.png)
![y=15.75(1.5)^1](https://img.qammunity.org/2020/formulas/mathematics/high-school/71wzjmvhtfgobq2pjjht5qyf3whjhswyfj.png)
![y=23.625](https://img.qammunity.org/2020/formulas/mathematics/high-school/ef9tno4r8uhjpz7g3rtdwwvq8r64ulrl4k.png)
- For
![x=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgwu4x0cp6hdykhfamznd7kqdkp0xgsg9s.png)
![y=15.75(1.5)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/hpnkmhmta71a4c4uf388k3ikdbh3qsjpos.png)
![y=15.75(1.5)^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/qsoxxeqec58wwcvq6zfjnnic9otgqn9pi8.png)
![y=35.4375](https://img.qammunity.org/2020/formulas/mathematics/high-school/nhx8if8h8qdukuxxbil8eg891uptwbsq6w.png)