The homogeneous ODE
![36y''-y=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/1j617k20d1xms4ozzd7pxi4zvtl9ampih0.png)
has characteristic equation
![36r^2-1=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/h2i98bvbv145pokcdt4ge0liq9j80gzxoz.png)
with roots at
, and admits two linearly independent solutions,
![y_1=e^(x/6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hujj2v4ywyn5d7cnj7t9ndx03niv037pwh.png)
![y_2=e^(-x/6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/i7kuvu6on0ormhzm0zud4m79rzrc4h3gnh.png)
as the Wronskian is
![W(y_1,y_2)=\begin{vmatrix}e^(x/6)&e^(-x/6)\\\\\frac16e^(x/6)&-\frac16e^(-x/6)\end{vmatrix}=-\frac13\\eq0](https://img.qammunity.org/2020/formulas/mathematics/high-school/lmavsnnh241hu9hor3p7y2hs9x5j873nqn.png)
Variation of parameters has us looking for solutions of the form
![y_p=u_1y_1+u_2y_2](https://img.qammunity.org/2020/formulas/mathematics/high-school/h0njxjutityr9i44u1mubsxbxod0mb8b6f.png)
such that
![u_1=-\displaystyle\int(y_2xe^(x/6))/(W(y_1,y_2))\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/xnx5oxzh25w32z6ht24g7j8kfgwnqu067y.png)
![u_2=\displaystyle\int(y_1xe^(x/6))/(W(y_1,y_2))\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/d14ud7ndqme7n8gns0cvji4l5cpcfd833x.png)
We have
![u_1=\displaystyle3\int x\,\mathrm dx=\frac{3x^2}2](https://img.qammunity.org/2020/formulas/mathematics/high-school/rbff5qjum1u2scosw3gnurbn2ukd786oik.png)
![u_2=\displaystyle-3\int xe^(x/3)\,\mathrm dx=-9e^(x/3)(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yiohwxmpp6ff7if0hx42400a6pl0v365re.png)
and we get
![y_p=\frac{3x^2e^(x/6)}2-9e^(x/6)(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/b75mydmwavx1jz3xzsveff14crrvkzfxwe.png)
The general solution is
![y=y_c+y_p](https://img.qammunity.org/2020/formulas/mathematics/high-school/kuedg8vb7zumkda863frqw6b6ln58spulk.png)
![y=C_1e^(x/6)+C_2e^(-x/6)+\frac{3x^2e^(x/6)}2-9e^(x/6)(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qeiewspmfzirnjdxujhqmcv4wexxek1j6g.png)
The initial conditions tell us
![\begin{cases}1=C_1+C_2+27\\\\0=\frac{C_1}6-\frac{C_2}6-\frac92\end{cases}\implies C_1=\frac12,C_2=-\frac{53}2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ka6d2xu93qxvdd6k5ugp571txs7ibdvtv5.png)
so that the particular solution is
![y=\frac12e^(x/6)-\frac{53}2e^(-x/6)+\frac32x^2e^(x/6)-9e^(x/6)(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jj7b5ziqw9vgke5v8zh4ea35jue9c12nnf.png)