74.3k views
9 votes
Part B

Enter the numerical coordinates of the vertices of quadrilateral ABCD in the table. (Point A has been done for you.) Then predict the numerical
coordinates of the vertices of quadrilateral A'B'C'D' as the figure translates four different ways: 7 units up, 1 unit down, 4 units to the right, and 3
units to the left.

Part B Enter the numerical coordinates of the vertices of quadrilateral ABCD in the-example-1
User Adirio
by
3.9k points

1 Answer

6 votes

9514 1404 393

Answer:

up: (-3, 5); down: (-3, -3); right: (1, -2); left: (-6, -2)

Explanation:

As you know, the coordinates of a given point tell you the distance ...

(right, up)

So, a displacement 7 units up adds 7 to the second coordinate value:

A(-3, -2) ⇒ A'(-3, -2+7) = A'(-3, 5) . . . . 7 units up

Likewise, 1 unit down subtracts 1 unit from the second coordinate value:

A(-3, -2) ⇒ A'(-3, -3) . . . . 1 unit down

__

Similarly, left-right changes affect only the first coordinate. Displacements right are added; displacements left are subtracted.

A(-3, -2) ⇒ A'(-3+4, -2) = A'(1, -2) . . . . 4 units right

A(-3, -2) ⇒ A'(-6, -2) . . . . 3 units left

User DylanJ
by
3.6k points