100k views
1 vote
Multiply (x^2+3x+4)(3x^2-2x+1)

Multiply (x^2+3x+4)(3x^2-2x+1)-example-1

2 Answers

5 votes

Answer:

B

Explanation:

When multiplying
(x^2+3x+4)(3x^2-2x+1), we can use the distributive property of multiplication over addition:


(x^2+3x+4)(3x^2-2x+1)=x^2\cdot 3x^2+x^2\cdot (-2x)+x^2\cdot 1+3x\cdot 3x^2+3x\cdot (-2x)+3x\cdot 1+4\cdot 3x^2+4\cdot (-2x)+4\cdot 1=3x^4-2x^3+x^2+9x^3-6x^2+3x+12x^2-8x+4.

Now group the like terms:


3x^4-2x^3+x^2+9x^3-6x^2+3x+12x^2-8x+4=3x^4+(-2x^3+9x^3)+(x^2-6x^2+12x^2)+(3x-8x)+4=3x^4+7x^3+7x^2-5x+4.

User Bill Sempf
by
6.8k points
3 votes

Answer: option B

Explanation:

To solve this exercise you must apply the proccedure shown below:

- Apply the Distributive property (Remember that when you multiply two powers with the same base, you must add the exponents).


b^m*b^n=b^((m+n))

- Add the like terms.

Therefore, you obtain that the product is:


(x^2+3x+4)(3x^2-2x+1)=3x^4-2x^3+x^2+9x^3-6x^2+3x+12x^2-8x+4\\=3x^4+7x^3+7x^2-5x+4

User Melanie
by
5.8k points