QUESTION 1
Recall the mnemonics; SOH
![\sin L =(Opposite)/(Hypotenuse)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3f0ajmxvqhdlwyqs4kvmr42foaa2b3aqo2.png)
![\sin L =(12)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2vbj8gxoeuffuy1ks50ipm3fnsg9hqadbq.png)
QUESTION 2
Recall the mnemonics; CAH
![\cos L =(Adjacent)/(Hypotenuse)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/deu1hv08l1pi32tvfapfdm5h1h45ah7zc1.png)
![\sin L =(5)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sw2nnf5i1clxk5c1t515hpr3cfgp6h697v.png)
QUESTION 3
Recall the mnemonics; TOA
![\tan M =(Opposite)/(Adjacent)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7c4ed730cfvq89wg0th97s351n2mvw54j2.png)
![\tan M =(5)/(12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v7etpxj119ilwgehjugynmo5yjtxu2hk9x.png)
QUESTION 4
![\sin M =(Opposite)/(Hypotenuse)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1qeuugisvqtlol2mhd46kaexg5omil41rr.png)
![\sin M =(5)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4jep066asr0d5nudwvbh77jgz73g0ur9hb.png)
QUESTION 5
a) From the Pythagoras Theorem,
![AC^2+AB^2=BC^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r2hsfwz79wq9ut0szee0zt9efcg3w1od12.png)
![AC^2+4^2=5^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qsxamhqxqth3vu2xjvu6zdz74fuhfwkfut.png)
![AC^2+16=25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/542rs2qxf11uh0c9hevkxnhrvj3vec2aq3.png)
![AC^2=25-16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nddh8a63ijpuycdjjuj7r6ylh8w3t8kvz6.png)
![AC^2=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ffgrp5vhldspajsgx1wquj7ow836pbkbuo.png)
![AC=√(9)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kbxl47gvml5di494ntxt9ypmxgf42ghuj4.png)
![AC=3yd](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bgs13jkt14lrk9ovce0o4gy1826j6b5c46.png)
b) Using the cosine ratio,
![\cos (m\angle B)=(4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/49nw2vap3vwvdgvqh094ydrvnyl0xh8ou2.png)
Take the inverse cosine of both sides;
![m\angle B=\cos ^(-1)((4)/(5))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wqrwh01b0c2c4up3r74sxfhghje39ibgy4.png)
![m\angle B=36.86](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tobsl9josc77acumv3tij9jwssinffc0om.png)
to the nearest tenth.
c)
![m\angle B +m\angle C=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qegwzzf8zsaqys6mo5h9j4ph50xkws7921.png)
![\Rightarrow 36.9\degree +m\angle C=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pqr2jfpv5jv5sd2igfjqrsggioq23ogv70.png)
![\Rightarrow m\angle C=90\degree-36.9\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b6h43ch3p4i30oq2tpfluwch9jbnh6jdtu.png)
![\Rightarrow m\angle C=53.1\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z9cwolksgmpqrkqcjh5ybngux0ufgnduhf.png)
QUESTION 6
a) using the sine ratio,
![\sin(51\degree)=(DE)/(18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e4llwtxws8w0k9mkoyo1s02r7lkkv25tmf.png)
![DE=18\sin(51\degree)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hwjlfwzzh8c1xgh17swm10a2d02er21a5j.png)
![DE=13.99](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j1nixbt6yiga204eujdz4hfnf3y76wmufp.png)
to the nearest tenth.
b) Using the cosine ratio,
![\cos (51\degree)=(EF)/(18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nsl8dmcwhw6610p1k6379jqhxzex5lzq1f.png)
![EF=18\cos (51\degree)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dp5k6hcx1ixcsrdtg1vbxhkfaph8dk8pk5.png)
to the nearest tenth.
c)
![m\angle D+ m\angle F=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/abnhfm7jo418xqyhr9w94k3k6y1edwbw0g.png)
![\Rightarrow m\angle D + 51\degree=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hyf66qu0gpjymn9w3wd8rlllugwu93rw3z.png)
![\Rightarrow m\angle D=90\degree-51\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yze63gu9nvk2ty95j5m5tztesswiewirwn.png)
![\Rightarrow m\angle D=39\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jgk2nlfkyvpnlagsptb6a3vfode0lehzly.png)
QUESTION 7
a) Using the Pythagoras Theorem;
![lG^2+GH^2=lH^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oci4xttkrrwocuf5w8lly9pss9nvi3ul3q.png)
![l15^2+GH^2=17^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1c80xmkljgxci1ga6kuf189njz5axyhkxc.png)
![225+GH^2=289](https://img.qammunity.org/2020/formulas/mathematics/middle-school/991seygneg176iiz91e45sqk18t9y92j2v.png)
![GH^2=289-225](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jt0650dpavc107sqj3kjb89ruco69pg3tq.png)
![GH^2=64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u3o5wv42ly3x74vyb9xge3ls3pi4dgzml2.png)
![GH=√(64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rxkyganipcyesoxqqrhk3opcv9kh2pixoc.png)
![GH=8km](https://img.qammunity.org/2020/formulas/mathematics/middle-school/caqtiwzznoc0kfkfxxhtgjf5tardh67unf.png)
b) Using the sine ratio,
![\sin(m\angle H)=(15)/(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mgaasrssjy67rop3inapf5tvs8zlpud87r.png)
![m\angle H=\sin^(-1)((15)/(17))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ew7ysa730gak5038gd51axls8p0nvpptd1.png)
![m\angle H=61.9\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6c1jv506n52xe0d2uwtxgz4edgxawg2vwy.png)
c)
![m\angle l + m\angle H=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/un4q4qy8qv54n63ey6hq068btks2bpmami.png)
![m\angle l +61.9\degree=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2oj6vlw27r6b0dakm41vg79hpogum0jryt.png)
![m\angle l =90\degree-61.9\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zvpyqqsuw22691mcd5fyb6b3rj04tsn0lx.png)
![m\angle l =28.1\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7uvijm5v3haz5t2v1co1ljw72gmty76rvo.png)
QUESTION 8
We plot the points as shown in the diagram.
QUESTION 9
From the diagram, the side lengths XY and YZ can be obtained by counting the boxes. Each box is 1 unit.
This implies that;
XY =3 units
YZ=5 units.
We use Pythagoras Theorem, to obtain XZ.
This implies that;
![XZ^2=XY^2+YZ^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e7c20d4fstj2ilnzerv3m1fe3qfw7gntvr.png)
![XZ^2=3^2+5^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fmx7yh4k4nuecf1btawg4d8bivxi4g9ndk.png)
![XZ^2=9+25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1vili4wgwrr4fyegzuq74zfrdzeqzf2ql4.png)
![XZ^2=34](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ry0zvd9s2055wh9k32o1a03h0nzyojvft0.png)
units
QUESTION 10.
a) Using the tangent ratio;
![\tan(m\angle X)=(5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2zdmvw8clywjctlu8xhbhun4dcj7rcdj0a.png)
![m\angle X=\tan^[-1}((5)/(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r5peqp1e6n95nzkaye7ldriggx7e1cjtlp.png)
![m\angle X=59.0\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wkr8wq8rp0u4fpbw5xibsk6jdzk2y9xyn7.png)
b)
![m\angle Z+m\angle X=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wn62hbwgv91mpzx07z1cupsoxudci3hve6.png)
![m\angle Z+59.0\degree=90\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/35mt38h9dn1bsy17f427xi3pj1tpq7s10b.png)
![m\angle Z=90\degree-59.0\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fpii0ocjr4h04njsdogwtdycz35j5wnpxj.png)
![m\angle Z=31.0\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/novyp69zdbye71ryzl2czixt5awmiwdsyi.png)
QUESTION 11
a) Triangle BCD is shown in the attachment.
The length of side DC=|3-2|=1 unit
The length of side DB=|4-3|=1 unit
Using Pythagoras Theorem;
![BC^2=DC^2+DB^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s8whe8c5koj20ucthvuv69nn4de961y3lb.png)
![BC^2=1^2+1^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bqxhzlc24q74b5wzkvyzap3j0oyravpx77.png)
![BC^2=1+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/63ai79pmyithyhy6cd5hqsatklnvihf00q.png)
![BC^2=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ymebiucyw8axpgy6vue45v34ubf7ykwpag.png)
![BC=√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/snz978l4incq7ktksmmqpvqxqyftnt1ins.png)
b) DB is perpendicular to DC, therefore m<D=90 degrees.
The length of DB is equal the length of DC.
This implies that;
m<C=m<B=45 degrees.
QUESTION 12
![\sin 30\degree=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y8l7395q7z5guc6v2wwj9spkcwmdk7lllv.png)
QUESTION 13
![\cos 30\degree=(√(3) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vqi7o2ddj5cp6jwjapeclhzrr6xnu7byjp.png)
QUESTION 14
![\tan 30\degree =(√(3) )/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/auk7xayed5wo4fs2agjzklnin4xyyt03ri.png)
QUESTION 15
![\tan 45\degree =1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9jn5imhx1iu2e75eo31njbulyjmgzpew2a.png)
QUESTION 16
![\cos 45\degree =(√(2) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7j7mvchmpedt4s4i7dhx01fusisjq40d29.png)
QUESTION 17
![\tan 45\degree =1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9jn5imhx1iu2e75eo31njbulyjmgzpew2a.png)
Check attachment for the rest