102k views
0 votes
Given that cos(30°) = cos(45°)cos(15°) + sin(45°)sin(15°), it follows that cos(30°) =

2 Answers

5 votes

Answer:

square root 3/2

Explanation:

on usatestprep and the unit circle

User Topxebec
by
5.6k points
4 votes

Answer:


cos(30\°) = cos(45\°-15\°)

Explanation:

To solve this problem you must know the formula of subtraction of angles for the function cosx.

The formula is:


cos(h-d) = cos(h)cos(d) + sin(h)sin(d)

We can write 30° as: 45° - 15°

Then:


cos(30\°) = cos(45\°-15\°)

Using the formula for subtraction of angles we have:


cos(45\°-15\°) = cos(45\°)cos(15\°) + sin(45\°)sin(15\°)

Notice that we have achieved the expression shown in the statement

Finally:


cos(30\°) = cos(45\°-15\°)

User Dskrvk
by
6.9k points