Answer:
![cos(30\°) = cos(45\°-15\°)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dunhob4s1do960bnzdowgmd7boq6rs7lq2.png)
Explanation:
To solve this problem you must know the formula of subtraction of angles for the function cosx.
The formula is:
![cos(h-d) = cos(h)cos(d) + sin(h)sin(d)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u6c1qadg4srdfnig5gmye82e7c4tbjt14d.png)
We can write 30° as: 45° - 15°
Then:
![cos(30\°) = cos(45\°-15\°)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dunhob4s1do960bnzdowgmd7boq6rs7lq2.png)
Using the formula for subtraction of angles we have:
![cos(45\°-15\°) = cos(45\°)cos(15\°) + sin(45\°)sin(15\°)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5tblq4990ivvbgki2dclhxtuwxk7cllhqs.png)
Notice that we have achieved the expression shown in the statement
Finally:
![cos(30\°) = cos(45\°-15\°)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dunhob4s1do960bnzdowgmd7boq6rs7lq2.png)