The robot has acceleration vector
![\vec a=-g\,\vec\jmath](https://img.qammunity.org/2020/formulas/mathematics/middle-school/29g1lrt4ese4c8k0blmyqdeup5w0x4e362.png)
where
is the acceleration due to gravity.
Its initial velocity is
![\vec v_0=\left(80(\rm ft)/(\rm s)\right)\cos80^\circ\,\vec\imath+\left(80(\rm ft)/(\rm s)\right)\sin80^\circ\,\vec\jmath](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6xltjgz11b25d2shb91rcde68q4zgyyt3u.png)
so that its velocity at time
is
![\vec v=\vec v_0+\displaystyle\int_0^t\vec a\,\mathrm du](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4juvtauui54lyu0d53v55idsulamqtlzw4.png)
![\vec v=\left(\left(80(\rm ft)/(\rm s)\right)\cos80^\circ\,\vec\imath+\left(80(\rm ft)/(\rm s)\right)\sin80^\circ\,\vec\jmath\right)+\left(-gt\,\vec\jmath\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bakalh5qjbf1zyp2uv6kb5vpo0vfhl0dgu.png)
![\vec v=\left(80(\rm ft)/(\rm s)\right)\cos80^\circ\,\vec\imath+\left(\left(80(\rm ft)/(\rm s)\right)\sin80^\circ-gt\right)\,\vec\jmath](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q70pdfegr1bje2lgz4bve1f886sfpzc0qy.png)
If we take the robot's starting position to be the origin, so that
, then its position vector at time
is
![\vec r=\vec0+\displaystyle\int_0^t\vec v\,\mathrm du](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dryso78359f25go61fxxw5nlubd68mj5lp.png)
![\vec r=\left(80(\rm ft)/(\rm s)\right)\cos80^\circ\,t\,\vec\imath+\left(\left(80(\rm ft)/(\rm s)\right)\sin80^\circ\,t-\frac g2t^2\right)\,\vec\jmath](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wpq98hxi70tu0641ru60gre976h7iwahyh.png)
The rocket is 10 feet horizontally away from its starting point when
![\left(80(\rm ft)/(\rm s)\right)\cos80^\circ\,t=10\implies t=0.72\,\mathrm s](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2j3hpm85tq0qtxcihy0usfalilhyetu6qr.png)
At this point, its vertical position is
![\left(80(\rm ft)/(\rm s)\right)\sin80^\circ(0.72\,\mathrm s)-\frac g2(0.72\,\mathrm s)^2=48\,\mathrm{ft}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ovb1ddssvc8430kr1rt710a9hmr04vgzkc.png)
above the ground.