130k views
2 votes
In the following image, AB is parallel to DC, and BC is a transversal intersecting both parallel lines. The measure of angle ABC is 118°

In the following image, AB is parallel to DC, and BC is a transversal intersecting-example-1
User Jeff Day
by
7.4k points

2 Answers

2 votes

Answer:

n° = 62°

p° = 62°

q° = 118°

v° = 84°

w° = 138°

Explanation:

angle ABC is 118°

so

m° + 118° = 180

m° = 180° - 118°

m° = 62°

n° = m° = 62° (corresponding angles are equal since AB is parallel to DC, and BC)

p° = n° = 62° (vertical angles are equal)

q° + n° = 180° (linear pair angles)

q° + 62° = 180°

q° = 180° - 62°

q° = 118°

v° + 96° = 180° (linear pair angles)

v° = 180° - 96°

v° = 84°

w° + 42° = 180 (linear pair angles)

w° = 180° - 42°

w° = 138°

User Kingjeffrey
by
8.4k points
1 vote

Answer:

n° = 62°

p° = 62°

q° = 118°

v° = 84°

w° = 138°

Explanation:

angle ABC is 118°

so

m° + 118° = 180

m° = 180° - 118°

m° = 62°

n° = m° = 62° (corresponding angles are equal since AB is parallel to DC, and BC)

p° = n° = 62° (vertical angles are equal)

q° + n° = 180° (linear pair angles)

q° + 62° = 180°

q° = 180° - 62°

q° = 118°

v° + 96° = 180° (linear pair angles)

v° = 180° - 96°

v° = 84°

w° + 42° = 180 (linear pair angles)

w° = 180° - 42°

w° = 138°

User Jonathan Bechtel
by
7.8k points