Answer:
Option B.
![(x-4)^(2)=44](https://img.qammunity.org/2020/formulas/mathematics/high-school/ylm1mzspaz1tp11tfg6mqt0umgupd4okb7.png)
Explanation:
we have
![x^(2)-8x-10=18](https://img.qammunity.org/2020/formulas/mathematics/high-school/8xmxbaltx6dl82chsfoh33dlnl72z38xse.png)
Group terms that contain the same variable, and move the constant to the opposite side of the equation
![x^(2)-8x=18+10](https://img.qammunity.org/2020/formulas/mathematics/high-school/vtmwr4be5jnvst484cln9exdduul083u6k.png)
![x^(2)-8x=28](https://img.qammunity.org/2020/formulas/mathematics/high-school/2t89x297wncqad3z1vaxpb0af8io90036r.png)
Complete the square. Remember to balance the equation by adding the same constants to each side
![x^(2)-8x+16=28+16](https://img.qammunity.org/2020/formulas/mathematics/high-school/bdgojc5m3sxys4kcoysuttetg0p0d0esdg.png)
![x^(2)-8x+16=44](https://img.qammunity.org/2020/formulas/mathematics/high-school/d2og4veqvqrek4e1rir94035b7t5ffn5y1.png)
Rewrite as perfect squares
![(x-4)^(2)=44](https://img.qammunity.org/2020/formulas/mathematics/high-school/ylm1mzspaz1tp11tfg6mqt0umgupd4okb7.png)