Answer:
The answer is (d) ⇒
![pq^(2)r\sqrt[3]{pr^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mcu951ojrbq31t27syz1hcqhraz1ziif2b.png)
Explanation:
* To simplify the cube roots:
If its number then the number must be written in the form x³
then we divide the power by 3 to cancel the radical
If its variable we divide its power by 3 to cancel the radical
∵
![\sqrt[3]{p^(4)q^(6)r^(5)}=p^{(4)/(3)}q^{(6)/(3)}r^{(5)/(3)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tzozxrn3iuhb2pgala6bvao0piiw4r0zah.png)
∴
![p^{(4)/(3)}q^(2)}r^{(5)/(3)}=p^{1(1)/(3)}q^(2)r^{1(2)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h5lpdl5gmnbtybar0exqcfsuzkum2so13z.png)
∵
![p^{(1)/(3)}=\sqrt[3]{p}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xcbjrr4qrs55t8d8dtzrh0t8lytzmgip35.png)
∵
![r^{(2)/(3)}=\sqrt[3]{r^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1q0sgkowlm59jxhx2jp6emkstmuib11yff.png)
∴
![p(p)^{(1)/(3)}q^(2)r(r)^{(2)/(3)}=p(\sqrt[3]{p})q^(2)r(\sqrt[3]{r^(2)})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3tc7ncpja2cbhzbfy44md24m0gn9m7m6da.png)
∴
![prq^(2)\sqrt[3]{pr^(2)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gpt0mgikvqg0tehwc62kepwd39plztvvgd.png)
∴ The answer is (d)