Answer:
![\large\boxed{(x-5)^2+(y-3)^2=5^2\to(x-5)^2+(y-3)^2=25}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wj6ov9u6qa0uqfvhqkizj8et7d5uoqe69o.png)
Explanation:
The standard form of an equation of a circle:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/kmmm139x85fjht54s8zz0668styzp2e6cm.png)
(h, k) - center
r - radius
We have the end points of a diameter (8, 6) and (2, 0). The midpoint of a diameter is a center of a circle. Half of a length of diameter is a length of a radius.
The formula of a midpoint of a segment:
![\left((x_1+x_2)/(2),\ (y_1+y_2)/(2)\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/e96t62p9ihcguuiwp5x1cqf5inlofo79p7.png)
Substitute:
![x=(8+2)/(2)=(10)/(2)=5\\\\y=(6+0)/(2)=(6)/(2)=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q9l3ior4h7frw72yp4k0h6zm6uv7qbaxuc.png)
The center of a circle is (5, 3).
The formula of a length of a segment:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq23b7gn8a5hqb5oj8gmcxlbivj810cso4.png)
Substitute:
![d=√((2-8)^2+(0-6)^2)=√((-8)^2-(-6)^2)=√(64+36)=√(100)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/94zndgem204r86j5kvotoc9a48a0q1r29j.png)
The length of a diameter is 10 units. The length of a radius r = 10 : 2 = 5 units.
Finally we have the equation of a circle:
![(x-5)^2+(y-3)^2=5^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4coimvw8l3ntp7rwcbnwewc04d6prcovlu.png)